Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.627
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731964

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Cannabidiol , Cytokines , Inflammation , Nanoparticles , Cannabidiol/chemistry , Cannabidiol/pharmacology , Nanoparticles/chemistry , Cytokines/metabolism , Inflammation/drug therapy , Humans , Animals , Free Radicals , Mice , Drug Carriers/chemistry , Lipids/chemistry , Cell Line , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Liposomes
2.
Med Oncol ; 41(6): 140, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713310

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Brain Neoplasms , Cannabidiol , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Stress Granules/metabolism , Stress Granules/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38701414

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.


Glioma , Humans , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Animals , Models, Biological , Cell Line, Tumor , Organophosphorus Compounds/therapeutic use , Organophosphorus Compounds/pharmacology
4.
Exp Biol Med (Maywood) ; 249: 10141, 2024.
Article En | MEDLINE | ID: mdl-38711461

Liver fibrosis has become a serious public health problem that can develop into liver cirrhosis and hepatocellular carcinoma and even lead to death. Cannabidiol (CBD), which is an abundant nonpsychoactive component in the cannabis plant, exerts cytoprotective effects in many diseases and under pathological conditions. In our previous studies, CBD significantly attenuated liver injury induced by chronic and binge alcohol in a mouse model and oxidative bursts in human neutrophils. However, the effects of CBD on liver fibrosis and the underlying mechanisms still need to be further explored. A mouse liver fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and used to explore the protective properties of CBD and related molecular mechanisms. After the injection protocol, serum samples and livers were used for molecular biology, biochemical and pathological analyses. The results showed that CBD could effectively improve liver function and reduce liver damage and liver fibrosis progression in mice; the expression levels of transaminase and fibrotic markers were reduced, and histopathological characteristics were improved. Moreover, CBD inhibited the levels of inflammatory cytokines and reduced the protein expression levels of p-NF-κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB and activating PPAR-α. In conclusion, these results suggest that the hepatoprotective effects of CBD may be due to suppressing the inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-α signaling pathways might be involved in this process.


Cannabidiol , Carbon Tetrachloride , Liver Cirrhosis , NF-kappa B , PPAR alpha , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , NF-kappa B/metabolism , PPAR alpha/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Mice , Carbon Tetrachloride/toxicity , Male , Signal Transduction/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Liver/pathology , Liver/drug effects , Liver/metabolism
5.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731434

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
6.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731471

It has been several years since highly purified cannabidiol (CBD) was registered as a medication that can be used in children of at least 2 years of age to treat different types of seizures related to Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and more recently tuberous sclerosis complex (TSC). During this time, 39 randomized clinical trials (RCTs) and 13 meta-analyses on the efficacy and safety of CBD treatment have been published. Each of the meta-analyses had its own criteria for the RCTs' inclusion and, therefore, slightly different interpretations of the analyzed data. Each of them contributed in its own way to the understanding of CBD pharmacology, mechanisms of therapeutic action, development of adverse reactions, and drug-drug interactions. Hence, it seemed reasonable to gather the most relevant data in one article and present all the current knowledge on the use of CBD in epilepsy. The results of the 13 meta-analyses presented herein confirmed the effectiveness and safety of CBD in children and adolescents with DREs. In adults, reliable conclusions cannot be drawn due to insufficient data.


Anticonvulsants , Cannabidiol , Epilepsy , Humans , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Epilepsy/drug therapy , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Randomized Controlled Trials as Topic , Lennox Gastaut Syndrome/drug therapy , Child , Treatment Outcome , Epilepsies, Myoclonic/drug therapy
7.
CNS Neurosci Ther ; 30(5): e14737, 2024 05.
Article En | MEDLINE | ID: mdl-38702929

AIMS: This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS: The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS: Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS: This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.


Cannabidiol , Methamphetamine , Mice, Inbred C57BL , MicroRNAs , RNA, Circular , RNA, Messenger , Animals , Cannabidiol/pharmacology , Male , Methamphetamine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , RNA, Circular/genetics , RNA, Messenger/metabolism , Recurrence , Central Nervous System Stimulants/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Gene Regulatory Networks/drug effects
8.
J Gen Physiol ; 156(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38652080

Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to ß-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.


Cannabidiol , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Muscle Proteins , Cannabidiol/pharmacology , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , HEK293 Cells , Potassium Channels/metabolism , Potassium Channels/drug effects , Ion Channel Gating/drug effects
9.
Drug Metab Rev ; 56(2): 164-174, 2024.
Article En | MEDLINE | ID: mdl-38655747

Due to legal, political, and cultural changes, the use of cannabis has rapidly increased in recent years. Research has demonstrated that the cannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) inhibit and induce cytochrome P450 (CYP450) enzymes. The objective of this review is to evaluate the effect of CBD and THC on the activity of CYP450 enzymes and the implications for drug-drug interactions (DDIs) with psychotropic agents that are CYP substrates. A systematic search was conducted using PubMed, Scopus, Scientific Electronic Library Online (SciELO) and PsychINFO. Search terms included 'cannabidiol', 'tetrahydrocannabinol', and 'cytochrome P450'. A total of seven studies evaluating the interaction of THC and CBD with CYP450 enzymes and psychotropic drugs were included. Both preclinical and clinical studies were included. Results from the included studies indicate that both CBD and THC inhibit several CYP450 enzymes including, but not limited to, CYP1A2, CYP3C19, and CYP2B6. While there are a few known CYP450 enzymes that are induced by THC and CBD, the induction of CYP450 enzymes is an understudied area of research and lacks clinical data. The inhibitory effects observed by CBD and THC on CYP450 enzymes vary in magnitude and may decrease the metabolism of psychotropic agents, cause changes in plasma levels of psychotropic medications, and increase adverse effects. Our findings clearly present interactions between THC and CBD and several CYP450 enzymes, providing clinicians evidence of a high risk of DDIs for patients who consume both cannabis and psychotropic medication. However, more clinical research is necessary before results are applied to clinical settings.


Cannabidiol , Cytochrome P-450 Enzyme System , Dronabinol , Drug Interactions , Cannabidiol/pharmacology , Humans , Dronabinol/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Animals , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Psychotropic Drugs/pharmacology
10.
Molecules ; 29(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38611847

Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.


Cannabidiol , Cannabinoids , Cannabis , Mesenchymal Stem Cells , Plant Extracts , Humans , Cannabinoids/pharmacology , Cannabidiol/pharmacology , PPAR gamma , Endocannabinoids , Adipose Tissue, Brown , RNA, Messenger
11.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612415

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects. Clinical studies suggest that CBD modulates endocannabinoid signaling through several receptor sites, offering a multifaceted approach to sleep regulation. Similarly, palmitoylethanolamide (PEA), in addition to interacting with the endocannabinoid system, acts as an agonist on peroxisome proliferator-activated receptors (PPARs). The favorable safety profile of CBD and PEA and the potential for long-term use make them an attractive alternative to conventional pharmacotherapy. The integration of the latter two compounds into comprehensive treatment strategies, together with cognitive-behavioral therapy for insomnia (CBT-I), represents a holistic approach to address the multifactorial nature of sleep disorders. Further research is needed to establish the optimal dosage, safety, and efficacy in different patient populations, but the therapeutic potential of CBD and PEA offers hope for improved sleep quality and general well-being.


Cannabidiol , Cannabinoids , Sleep Wake Disorders , Humans , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Endocannabinoids , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Sleep
12.
Chem Biol Interact ; 394: 110995, 2024 May 01.
Article En | MEDLINE | ID: mdl-38583854

Small molecule-driven ERK activation is known to induce autophagy and ferroptosis in cancer cells. Herein the effect of cannabidiol (CBD), a phytochemical derived from Cannabis sativa, on ERK-driven autophagy and ferroptosis has been demonstrated in glioblastoma (GBM) cells (U87 and U373 cells). CBD imparted significant cytotoxicity in GBM cells, induced activation of ERK (not JNK and p38), and increased intracellular reactive oxygen species (ROS) levels. It increased the autophagy-related proteins such as LC3 II, Atg7, and Beclin-1 and modulated the expression of ferroptosis-related proteins such as glutathione peroxidase 4 (GPX4), SLC7A11, and TFRC. CBD significantly elevated the endoplasmic reticulum stress, ROS, and iron load, and decreased GSH levels. Inhibitors of autophagy (3-MA) and ferroptosis (Fer-1) had a marginal effect on CBD-induced autophagy/ferroptosis. Treatment with N-acetyl-cysteine (antioxidant) or PD98059 (ERK inhibitor) partly reverted the CBD-induced autophagy/ferroptosis by decreasing the activation of ERK and the production of ROS. Overall, CBD induced autophagy and ferroptosis through the activation of ERK and generation of ROS in GBM cells.


Autophagy , Cannabidiol , Ferroptosis , Glioblastoma , Reactive Oxygen Species , Humans , Reactive Oxygen Species/metabolism , Autophagy/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , Cannabidiol/pharmacology , Ferroptosis/drug effects , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Endoplasmic Reticulum Stress/drug effects , Enzyme Activation/drug effects , Beclin-1/metabolism , MAP Kinase Signaling System/drug effects
13.
Front Immunol ; 15: 1373435, 2024.
Article En | MEDLINE | ID: mdl-38601151

Introduction: The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods: We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results: The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions: These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.


Cannabidiol , Cannabinoids , Psoriasis , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Leukocytes, Mononuclear , Psoriasis/drug therapy , Endocannabinoids
14.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602576

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Cannabidiol , Animals , Mice , RNA, Small Interfering/genetics , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Hyperalgesia/drug therapy , Anti-Inflammatory Agents , Disease Models, Animal , Paclitaxel/toxicity , Receptors, Cannabinoid/genetics
15.
Front Immunol ; 15: 1268652, 2024.
Article En | MEDLINE | ID: mdl-38558822

Introduction: A multitude of findings from cell cultures and animal studies are available to support the anti-cancer properties of cannabidiol (CBD). Since CBD acts on multiple molecular targets, its clinical adaptation, especially in combination with cancer immunotherapy regimen remains a serious concern. Methods: Considering this, we extensively studied the effect of CBD on the cytokine-induced killer (CIK) cell immunotherapy approach using multiple non-small cell lung cancer (NSCLC) cells harboring diverse genotypes. Results: Our analysis showed that, a) The Transient Receptor Potential Cation Channel Subfamily V Member 2 (TRPV2) channel was intracellularly expressed both in NSCLC cells and CIK cells. b) A synergistic effect of CIK combined with CBD, resulted in a significant increase in tumor lysis and Interferon gamma (IFN-g) production. c) CBD had a preference to elevate the CD25+CD69+ population and the CD62L_CD45RA+terminal effector memory (EMRA) population in NKT-CIK cells, suggesting early-stage activation and effector memory differentiation in CD3+CD56+ CIK cells. Of interest, we observed that CBD enhanced the calcium influx, which was mediated by the TRPV2 channel and elevated phosphor-Extracellular signal-Regulated Kinase (p-ERK) expression directly in CIK cells, whereas ERK selective inhibitor FR180204 inhibited the increasing cytotoxic CIK ability induced by CBD. Further examinations revealed that CBD induced DNA double-strand breaks via upregulation of histone H2AX phosphorylation in NSCLC cells and the migration and invasion ability of NSCLC cells suppressed by CBD were rescued using the TRPV2 antagonist (Tranilast) in the absence of CIK cells. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. Conclusions: Taken together, CBD holds a great potential for treating NSCLC with CIK cell immunotherapy. In addition, we utilized NSCLC with different driver mutations to investigate the efficacy of CBD. Our findings might provide evidence for CBD-personized treatment with NSCLC patients.


Cannabidiol , Carcinoma, Non-Small-Cell Lung , Cytokine-Induced Killer Cells , Lung Neoplasms , Animals , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Cannabidiol/pharmacology , Lung Neoplasms/therapy , Proto-Oncogene Proteins p21(ras) , RNA, Messenger
16.
J Int Soc Sports Nutr ; 21(1): 2337252, 2024 Dec.
Article En | MEDLINE | ID: mdl-38572744

BACKGROUND: Rapid regeneration after intense exercise is essential for competitive athletes. Based on this assumption, supplementation strategies, focusing on food supplements, are increasing to improve the recovery processes. One such supplement is cannabidiol (CBD) which is gaining more attention in competitive sports. However, the evidence is still lacking and there are no data available about the effect of a short-term chronic application. METHODS: A three-arm double-blind cross-over study was conducted to determine the effects of two different CBD products on performance, muscle damage and inflammatory processes in well-trained athletes. In total 17 subjects took successfully part in this study. Each subject underwent the six-day, high-intensity training protocol three times. After each training session, each subject took either a placebo or a CBD product (60 mg of oil or solubilisate). Between the intervention phases, at least four weeks of washout period was conducted. Before and after the training protocols the performance capacity in countermovement jump (CMJ), back squat (BS), bench press (BP) and 1-mile run were measured and biomarkers for muscle damage (creatine kinase, myoglobin), inflammatory processes (interleukin 6 and 10) and immune cell activity (ratios of neutrophil granulocytes, lymphocytes and, platelets) were analyzed. For statistical analyses, the current version of R and a linear mixed model was used. RESULTS: It could identify different effects of the training protocol depending on performance level (advanced or highly advanced athletes) (p < .05). Regardless of the performance level, muscle damage and a reduction in performance could be induced by the training protocol. Only CBD oil was associated with a reduction in myoglobin concentration (p < .05) in advanced athletes. Concerning immune activity, a significant decrease in platelets lymphocyte ratios was observed in advanced athletes after placebo treatment (p < .05). CBD oil application showed a slight inhibitory effect (p < .10). Moreover, the reduction in performance differs between the performance levels. A significant decrease in CMJ was observed in advanced athletes and a decreasing trend in BS was observed in highly advanced athletes after placebo treatment (p < 0.10). Both CBD products do not affect performance parameters. For inflammatory parameters, no effects were observed. CONCLUSION: It was found that the performance level of the subjects was a decisive factor and that they responded differently to the training protocol and the CBD application. However, no clear effects of either CBD product were found and further research is needed to identify the long-term effects of CBD application.


Cannabidiol , Sports , Humans , Cross-Over Studies , Cannabidiol/pharmacology , Myoglobin , Muscle, Skeletal , Athletes , Double-Blind Method , Dietary Supplements , Randomized Controlled Trials as Topic
17.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672512

In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 µM to 50 µM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.


Benzoxazines , Cannabidiol , Cell Survival , Dronabinol , Lymphoma, Non-Hodgkin , Morpholines , Naphthalenes , Humans , Dogs , Cannabidiol/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dronabinol/pharmacology , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/metabolism , Lymphoma, Non-Hodgkin/pathology , Benzoxazines/pharmacology , Naphthalenes/pharmacology , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Endocannabinoids/pharmacology , Endocannabinoids/metabolism
18.
Genes (Basel) ; 15(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38674453

Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD.


Cannabidiol , Disease Models, Animal , Hippocampus , Stress Disorders, Post-Traumatic , Transcriptome , Animals , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice , Cannabidiol/pharmacology , Male , Gene Expression Profiling , Mice, Inbred C57BL
19.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38590254

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Alzheimer Disease , Cannabidiol , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Brain-Gut Axis , Cognition , Cognitive Dysfunction/drug therapy , Disease Models, Animal
20.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38587319

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Cannabidiol , Neuroprotective Agents , Female , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Dopamine/pharmacology , Apelin/metabolism , Apelin/pharmacology , Cyclic AMP Response Element-Binding Protein , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases , Lipopolysaccharides/toxicity , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Hippocampus/metabolism , Gene Expression
...